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We articulate the design imperatives for creating machine-learning
based digital twins for nonlinear dynamical systems subject to exter-
nal driving, which can be used to monitor the “health” of the target
system and to anticipate its possible future collapse in different sce-
narios. The digital twins are tested on prototypical systems from
optics, ecology, and climate, where the respective specific examples
are a driven chaotic CO2 laser system, a model of phytoplankton
subject to seasonality, and the driven Lorenz-96 climate network. We
demonstrate that, with a single or parallel reservoir computers as
the platform, the digital twins are capable of a variety of challenging
forecasting and monitoring tasks. In particular, a digital twin created
according to our design imperatives has the following capabilities:
(1) extrapolating the dynamics of the target system to certain param-
eter regimes that it has never experienced before, (2) making contin-
ual forecasting and monitoring with sparse real-time updates under
non-stationary external driving, (3) inferring the existence of hidden
variables in the target system and accurately reproducing/predicting
their dynamical evolution into the future, (4) adapting to external driv-
ing of different waveform, and (5) extrapolating the global bifurca-
tion behaviors to network systems of some different sizes. These
features make our digital twins appealing in significant applications
such as monitoring the health of critical systems of current interest
and forecasting their potential collapse induced by environmental
changes or perturbations. Such systems can be an infrastructure,
an ecosystem, or a regional climate system.
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The concept of digital twins originated from aerospace1

engineering for aircraft structural life prediction (1). In2

general, a digital twin can be used for predicting dynamical sys-3

tems and generating solutions of emergent behaviors that can4

potentially be catastrophic (2). Digital twins have attracted a5

great deal of attention from a wide range of fields (3) including6

medicine and health care (4, 5). For example, the idea of7

developing medical digital twins in viral infection through8

a combination of mechanistic knowledge, observational data,9

medical histories, and artificial intelligence has been proposed10

recently (6), which can potentially lead to a powerful addi-11

tion to the existing tools to combat future pandemics. In a12

more dramatic development, the European Union plans to13

fund the development of digital twins of Earth for its green14

transition (7, 8).15

The physical world is nonlinear. Many engineering systems,16

such as complex infrastructural systems, are governed by non-17

linear dynamical rules, too. In nonlinear dynamics, various18

bifurcations leading to chaos and system collapse can take19

place (9). For example, in ecology, environmental deterioration20

caused by global warming can lead to slow parameter drift21

towards chaos and species extinction (10, 11). In an electrical22

power system, voltage collapse can occur after a parameter23

shift that lands the system in transient chaos (12). The various24

climate systems in different geographic regions of the world25

are also nonlinear and the emergent catastrophic behaviors as 26

the result of increasing human activities are of grave concern. 27

In all these cases, it is of interest to develop a digital twin 28

of the system of interest to monitor its “health” in real time 29

as well as for predictive problem solving in the sense that, if 30

the digital twin indicates a possible system collapse in the 31

future, proper control strategies should and can be devised 32

and executed in time to prevent the collapse. 33

What does it take to create a digital twin for a nonlin- 34

ear dynamical system? For natural and engineering systems, 35

there are two general approaches: one is based on mechanistic 36

knowledge and another is based on observational data. In 37

principle, if the detailed physics of the system is well under- 38

stood, it should be possible to construct a digital twin through 39

mathematical modeling. However, there are two difficulties 40

associated with this modeling approach. First, a real-world 41

system can be high-dimensional and complex, preventing the 42

rules governing its dynamical evolution from being known at 43

a sufficiently detailed level. Second, the hallmark of chaos is 44

sensitive dependence on initial conditions. Because no mathe- 45

matical model of the underlying physical system can be perfect, 46

the small deviations and high dimensionality of the system 47

coupled with environmental disturbances can cause the model 48

predictions of the future state of the system to be inaccurate 49

and completely irrelevant (13, 14). These difficulties motivate 50

the proposition that data-based approach can have advantages 51

in many realistic scenarios and a viable method to develop 52

a digital twin is through data. While in certain cases, ap- 53

proximate system equations can be found from data through 54

sparse optimization (15–17), the same difficulties with the 55

modeling approach arise. These considerations have led us to 56
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exploit machine learning to create digital twins for nonlinear57

dynamical systems.58

Given a nonlinear dynamical system, its digital twin is59

also a dynamical system, rendering appropriate exploitation60

of recurrent neural networks that can be designed to generate61

self-dynamical evolution with memory. In this regard, reservoir62

computers (RC) (18–20) that have been extensively studied63

in recent years (21–42) provide a starting point, which can64

be trained from observational data to generate closed-loop65

dynamical evolution that follows the evolution of the target66

system for a finite amount of time. Another advantage of67

RC is that no back-propagation is needed for optimizing the68

parameters - only a linear regression is required in the training69

so it is computationally efficient. A common situation is that70

the target system is subject to external driving, such as a driven71

laser, a regional climate system, or an ecosystem under external72

environmental disturbances. Accordingly, the digital twin must73

accommodate a mechanism to control or steer the dynamics74

of the RC neural network to account for the external driving.75

Introducing a control mechanism distinguishes our work from76

existing ones in the literature of RC as applied to nonlinear77

dynamical systems. Of particular interest is whether the78

collapse of the target chaotic system can be anticipated from79

the digital twin. The purpose of this paper is to demonstrate80

that the digital twin so created can accurately produce the81

bifurcation diagram of the target system and faithfully mimic82

its dynamical evolution from a statistical point of view. The83

digital twin can then be used to monitor the present and future84

“health” of the system. More importantly, with proper training85

from observational data the twin can reliably anticipate system86

collapses, providing early warnings of potentially catastrophic87

failures of the system.88

More specifically, using three prototypical systems from89

optics, ecology, and climate, respectively, we demonstrate90

that the RC based digital twins developed in this paper solve91

the following challenging problems: (1) extrapolation of the92

dynamical evolution of the target system into certain “un-93

charted territories” in the parameter space, (2) long-term94

continual forecasting of nonlinear dynamical systems subject95

to non-stationary external driving with sparse state updates,96

(3) inference of hidden variables in the system and accurate97

prediction of their dynamical evolution into the future, (4)98

adaptation to external driving of different waveform, and (5)99

extrapolation of the global bifurcation behaviors of network100

systems to some different sizes. These features make our101

digital twins appealing in applications.102

Results103

For clarity, we present results on the digital twin for a prototyp-104

ical nonlinear dynamical systems with adjustable phase-space105

dimension: the Lorenz-96 climate network model (43). In the106

Supporting Material (SM), we present two additional exam-107

ples: a chaotic laser (SM 1) and a driven ecological system108

(SM 2), together with a number of pertinent issues.109

A low-dimensional Lorenz-96 climate network and its dig-
ital twin. The Lorenz-96 system (43) is an idealized at-
mospheric climate model. Mathematically, the toy climate
system is described by m coupled first-order nonlinear differ-

ential equations subject to external periodic driving f(t):

dxi

dt
= xi−1(xi+1 − xi−2) − xi + f(t), [1]

where i = 1, . . . ,m, is the spatial index. Under the periodic 110

boundary condition, the m nodes constitute a ring network, 111

where each node is coupled to three neighboring nodes. To 112

be concrete, we set m = 6 (more complex high-dimensional 113

cases are treated below). The driving force is sinusoidal with 114

a bias F : f(t) = A sin(ωt) + F . We fix ω = 2 and F = 2, 115

and use the forcing amplitude A as the bifurcation parameter. 116

For relatively large values of A, the system exhibits chaotic 117

behaviors, as exemplified in Fig. 1(A1) for A = 2.2. Quasi- 118

periodic dynamics arise for smaller values of A, as exemplified 119

in Fig. 1(A2). As A decreases from a large value, a critical 120

transition from chaos to quasi-periodicity occurs at Ac ≈ 1.9. 121

We train the digital twin with time series from four values of 122

A, all in the chaotic regime: A = 2.2, 2.6, 3.0, and 3.4. The 123

size of the random reservoir network is Dr = 1, 200. For each 124

value of A in the training set, the training and validation 125

lengths are t = 2, 500 and t = 12, respectively, where the 126

latter corresponds to approximately five Lyapunov times. The 127

warming-up length is t = 20 and the time step of the reservoir 128

dynamical evolution is ∆t = 0.025. The hyperparameter 129

values (Please refer to the Methods section for their meanings) 130

are optimized to be d = 843, λ = 0.48, kin = 0.29, kc = 0.113, 131

α = 0.41, and β = 1 × 10−10. Our computations reveal that, 132

for the deterministic version of the Lorenz-96 model, it is 133

difficult to reduce the validation error below a small threshold. 134

However, adding an appropriate amount of noise into the 135

training time series (18) can lead to smaller validation errors. 136

We add an additive Gaussian noise with standard deviation 137

σnoise to each input data channel to the reservoir network 138

[including the driving channel f(t)]. The noise amplitude σnoise 139

is treated as an additional hyperparameter to be optimized. 140

For the toy climate system, we test several noise levels and find 141

the optimal noise level giving the best validating performance: 142

σnoise ≈ 10−3. 143

Figures 1(B1) and 1(B2) show the dynamical behaviors 144

generated by the digital twin for the same values of A as in 145

Figs. 1(A1) and 1(A2), respectively. It can be seen that not 146

only does the digital twin produce the correct dynamical be- 147

havior in the same chaotic regime where the training is carried 148

out, it can also extrapolate beyond the training parameter 149

regime to correctly predict the unseen system dynamics there 150

(quasiperiodicity in this case). To provide support in a broader 151

parameter range, we calculate true bifurcation diagram, as 152

shown in Fig. 1(C), where the four vertical dashed lines indi- 153

cate the four values of the training parameter. The bifurcation 154

diagram generated by the digital twin is shown in Fig. 1(D), 155

which agrees reasonably well with the true diagram. Note 156

that the digital twin fails to predict the the periodic window 157

about A = 3.2, due to its high period (period-21 - see Sup- 158

porting Material for a discussion). To quantify the prediction 159

performance, we examine the smallest simple connected region 160

that encloses the entire attractor - the spanned region, and 161

calculate the overlapping ratio of the true to the predicted 162

spanned regions. Figure 1(E) shows the relative error of the 163

spanned regions (RESR) versus A, where the spanned regions 164

are calculated from a two-dimensional projection of the attrac- 165

tor. Except for the locations of two periodic windows, RESR 166
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Fig. 1. Digital twin of the Lorenz-96 climate system. The toy climate system is described by six coupled first-order nonlinear differential equations (phase-space dimension
m = 6), which is driven by a sinusoidal signal f(t) = A sin(ωt) + F . (A1,A2) Ground truth: chaotic and quasi-periodic dynamics in the system for A = 2.2 and A = 1.6,
respectively, for ω = 2 and F = 2. The sinusoidal driving signals f(t) are schematically illustrated. (B1, B2) The corresponding dynamics of the digital twin under the same
driving signal f(t). Training of the digital twin is conducted using time series from the chaotic regime. The result in (B2) indicates that the digital twin is able to extrapolate
outside the chaotic regime to generate the unseen quasi-periodic behavior. (C, D) True and digital-twin generated bifurcation diagrams of the toy climate system, where the
four vertical red dashed lines indicate the values of driving amplitudes A, from which the training time series data are obtained. The reasonable agreement between the two
bifurcation diagrams attests to the ability of the digital twin to reproduce the distinct dynamical behaviors of the target climate system in different parameter regimes, even with
training data only in the chaotic regime. (E) Relative error of the spanned regions (RESR) versus A. The error is within 4%, except for the locations of two periodic windows at
which the large errors are due to long transients (see Sec. 8 in Supporting Information).
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Fig. 2. Digital twin consisting of a number of parallel RC neural networks for high-dimensional chaotic systems. The target system is the Lorenz-96 climate network of m = 20
nodes, subject to a global periodic driving f(t) = A sin(ωt) + F . (A) The structure of the digital twin, where each filled green circle represents a small RC network with the
input dimension Din = 5 and output dimension Dout = 2. (B1, B2) A chaotic and periodic attractor in a two-dimensional subspace of the target system for A = 1.8 and
A = 1.6, respectively, for ω = 2 and F = 2. (C1, C2) The attractors generated by the digital twin corresponding to those in (B1, B2), respectively, where the training is done
using four time series from four different values of forcing amplitude A, all in the chaotic regime. The digital twin with a parallel structure is able to successfully extrapolate the
unseen periodic behavior with completely chaotic training data. (D, E) The true and digital-twin generated bifurcation diagrams, respectively, where the four vertical dashed lines
in (c) specify the four values of A from which the training time series are obtained. (F) RESR versus A, where the peak at A ≈ 1.1 is due to the mismatched ending point of
the wide periodic window for A ∈ (1.2, 1.7).

is within 4%. When the testing values of A are further away167

from the training values, RESR tends to increase.168

Previously, it was suggested that RC can have a certain169

degree of extrapolability (34–39). Figure 1 represents an170

example where the target system’s response is extrapolated to171

external sinusoidal driving with unseen amplitudes. In general,172

extrapolation is a difficult problem. Some limitations of the173

extrapolability with respect to the external driving signal is174

discussed in SM 1, where the digital twin can predict the crisis175

point but cannot extrapolate the asymptotic behavior after176

the crisis.177

In the following, we systematically study the applicability178

of the digital twin in solving forecasting problems in more179

complicated situations than the basic settings demonstrated180

in Fig. 1. The issues to be addressed are high dimensionality,181

the effect of the waveform of the driving on forecasting, and182

the generalizability across Lorenz-96 networks of different183

sizes. Results of continual forecasting and inferring hidden184

dynamical variables using only rare updates of the observable185

are presented in SM 3 and 4, respectively.186

Digital twins of parallel RC neural networks for high-di-187

mensional Lorenz-96 climate networks. We extend the188

methodology of digital twin to high-dimensional Lorenz-96189

climate networks, e.g., m = 20. To deal with such a high-190

dimensional target system, if a single reservoir system is used,191

the required size of the neural network in the hidden layer192

will be too large to be computationally efficient. We thus193

turn to the parallel configuration (25) that consists of many194

small-size RC networks, each “responsible” for a small part of 195

the target system. For the Lorenz-96 network with m = 20 196

coupled nodes, our digital twin consists of ten parallel RC 197

networks, each monitoring and forecasting the dynamical evo- 198

lution of two nodes (Dout = 2). Because each node in the 199

Lorenz-96 network is coupled to three nearby nodes, we set 200

Din = Dout + Dcouple = 2 + 3 = 5 to ensure that sufficient 201

information is supplied to each RC network. 202

The specific parameters of the digital twin are as follows. 203

The size of the recurrent layer is Dr = 1, 200. For each training 204

value of the forcing amplitude A, the training and validation 205

lengths are t = 3, 500 and t = 100, respectively. The “warming 206

up” length is t = 20 and the time step of the dynamical 207

evolution of the digital twin is ∆t = 0.025. The optimized 208

hyperparameter values are d = 31, λ = 0.75, kin = 0.16, 209

kc = 0.16, α = 0.33, β = 1 × 10−12, and σnoise = 10−2. 210

The periodic signal used to drive the Lorenz-96 climate 211

network of 20 nodes is f(t) = A sin(ωt) + F with ω = 2, and 212

F = 2. The structure of the digital twin consists of 20 small 213

RC networks as illustrated in Fig. 2(A). Figures 2(B1) and 214

2(B2) show a chaotic and a periodic attractor for A = 1.8 and 215

A = 1.6, respectively, in the (x1, x2) plane. Training of the 216

digital twin is conducted by using four time series from four 217

different values of A, all in the chaotic regime. The attractors 218

generated by the digital twin for A = 1.8 and A = 1.6 are 219

shown in Figs. 2(C1) and 2(C2), respectively, which agree well 220

with the ground truth. Figure 2(D) shows the bifurcation 221

diagram of the target system (the ground truth), where the 222
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four values of A: A = 1.8, 2.2, 2.6, and 3.0, from which the223

training chaotic time series are obtained, are indicated by the224

four respective vertical dashed lines. The bifurcation diagram225

generated by the digital twin is shown in Fig. 2(E), which226

agrees well with the ground truth in Fig. 2(D). Figure 2(F)227

shows the relative error RESR versus A, where a peak occurs228

at A ≈ 1.1 due to the mismatched ending point of the large229

periodic window. The error values are between 2% to 6%.230

Driving Signals
for Training

Driving Signals
for Testing
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Fig. 3. Effects of waveform change in the external driving on the performance of the
digital twin. The time series used to train the digital twin are from the target system
subject to external driving of a particular waveform. A change in the waveform occurs
subsequently, leading to a different driving signal during the testing phase. (A) During
the training phase, the driving signal is of the form f(t) = A sin(ωt) + F and time
series from four different values of A are used for training the digital twin. The right
panel illustrates an example of the changed driving signal during the testing phase.
(B) The true bifurcation diagram of the target system under a testing driving signal.
(C) The bifurcation diagram generated by the digital twin, facilitated by an optimal
level of training noise determined through hyperparameter optimization.

Digital twins under external driving with varied waveform.231

The external driving signal is an essential ingredient in our232

articulation of the digital twin, which is particularly relevant233

to critical systems of interest such as the climate systems. In234

applications, the mathematical form of the driving signal may235

change with time. Can a digital twin produce the correct236

system behavior under a driving signal that is different than237

the one it has “seen” during the training phase? Note that,238

in the examples treated so far, it has been demonstrated that239

our digital twin can extrapolate the dynamical behavior of a 240

target system under a driving signal of the same mathematical 241

form but with a different amplitude. Here, the task is more 242

challenging as the form of the driving signal has changed. 243

As a concrete example, we consider the Lorenz-96 climate 244

network of m = 6 nodes, where a digital twin is trained with 245

a purely sinusoidal signal f(t) = A sin(ωt) + F , as illustrated 246

in the left column of Fig. 3(A). During the testing phase, the 247

driving signal has the form of the sum of two sinusoidal signals 248

with different frequencies: f(t) = A1 sin(ω1t) + A2 sin(ω2t + 249

∆φ) + F , as illustrated in the right panel of Fig. 3(A). We 250

set A1 = 2, A2 = 1, ω1 = 2, ω2 = 1, F = 2, and use ∆φ as 251

the bifurcation parameter. The RC parameter setting is the 252

same as that in Fig. 1. The training and validating lengths 253

for each driving amplitude A value are t = 3, 000 and t = 12, 254

respectively. We fine that this setting prevents the digital 255

twin from generating an accurate bifurcation diagram, but 256

a small amount of dynamical noise to the target system can 257

improve the performance of the digital twin. To demonstrate 258

this, we apply an additive noise term to the driving signal f(t) 259

in the training phase: df(t)/dt = ωA cos(ωt) + δDNξ(t), where 260

ξ(t) is a Gaussian white noise of zero mean and unit variance, 261

and δDN is the noise amplitude (e.g., δDN = 3 × 10−3). We 262

use the 2nd-order Heun method (44) to solve the stochastic 263

differential equations describing the target Lorenz-96 system. 264

Intuitively, the noise serves to excite different modes of the 265

target system to instill richer information into the training time 266

series, making the process of learning the target dynamics more 267

effective. Figures 3(B) and 3(C) show the actual and digital- 268

twin generated bifurcation diagrams. Although the digital 269

twin encountered driving signals in a completely “uncharted 270

territory,” it is still able to generate the bifurcation diagram 271

with a reasonable accuracy. The added dynamical noise is 272

creating small fluctuations in the driving signal f(t). This may 273

yield richer excited dynamical features of the target system 274

in the training data set, which can be learned by the RC 275

network. This should be beneficial for the RC network to 276

adapt to different waveform in the testing. Additional results 277

with varying testing waves f(t) are presented in SM 5. 278

Extrapolability of digital twin with respect to system size. 279

In the examples studied so far, it has been demonstrated 280

that our RC based digital twin has a strong extrapolability in 281

certain dimensions of the parameter space. Specifically, the 282

digital twin trained with time series data from one parameter 283

region can follow the dynamical evolution of the target system 284

in a different parameter regime. One question is whether the 285

digital twin possesses certain extrapolability in the system 286

size. For example, consider the Lorenz-96 climate network of 287

size m. In Fig. 2, we use an array of parallel RC networks to 288

construct a digital twin for the climate network of a fixed size 289

m, where the number of parallel RCs is m/2 (assuming that m 290

is even), and training and testing/monitoring are carried out 291

for the same system size. We ask, if a digital twin is trained 292

for climate networks of certain sizes, will it have the ability to 293

generate the correct dynamical behaviors for climate networks 294

of different sizes? If yes, we say that the digital twin has the 295

extrapolability with respect to system size. 296

As an example, we create a digital twin with time series data 297

from Lorenz-96 climate networks of sizes m = 6 and m = 10, 298

as shown in Fig. 4(A). For each system size, four values of the 299

forcing amplitude A are used to generate the training time 300

Kong et al. PNAS | October 26, 2022 | vol. XXX | no. XX | 5
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Fig. 4. Demonstration of extrapolability of digital twin in system size. (A) The digital
twin is trained using time series from the Lorenz-96 climate networks of size m = 6
and m = 10. The target climate system is subject to a sinusoidal driving f(t) =
A sin(ωt) + F , and the training time series data are from the A values marked by
the eight vertical orange dashed lines. (B) The true bifurcation diagrams of the target
climate network of size m = 4 and m = 12. (C) The corresponding digital-twin
generated bifurcation diagrams, where the twin consists of m/2 parallel RC networks,
each taking input from two nodes in the target system and from the nodes in the
network that are coupled to the two nodes.

series: A =1.5, 2.0, 2.5, and 3.0, as marked by the vertical301

orange dashed lines in Figs. 4(A) and 4(B). As in Fig. 2, the302

digital twin consists of m/2 parallel RC networks, each of303

size Dr = 1, 500. The optimized hyperparameter values are304

determined to be d = 927, λ = 0.71, kin = 0.076, kc = 0.078,305

α = 0.27, β = 1 × 10−11, and σnoise = 3 × 10−3. Then we306

consider climate networks of two different sizes: m = 4 and307

m = 12, and test if the trained digital twin can be adapted to308

the new systems. For the network of size m = 4, we keep only309

two parallel RC networks for the digital twin. For m = 12, we310

add one additional RC network to the trained digital twin for311

m = 10, so the new twin consists of six parallel RC networks312

of the same hyperparameter values. The true bifurcation313

diagrams for the climate system of sizes m = 4 and m = 12 314

are shown in Fig. 4(B) (the left and right panels, respectively). 315

The corresponding bifurcation diagrams generated by the 316

adapted digital twins are shown in Fig. 4(C), which agree with 317

the ground truth reasonably well, demonstrating that our RC 318

based digital twin possesses certain extrapolability in system 319

size. 320

Discussion 321

We have articulated the principle of creating digital twins for 322

nonlinear dynamical systems based on RCs that are recurrent 323

neural networks. In general, RC is a powerful neural network 324

framework that does not require backpropagation during train- 325

ing but only a linear regression is needed. This feature makes 326

the development of digital twins based on RC computation- 327

ally efficient. We have demonstrated that a well-trained RC 328

network is able to serve as a digital twin for systems subject 329

to external, time-varying driving. The twin can be used to 330

anticipate possible critical transitions or regime shifts in the 331

target system as the driving force changes, thereby providing 332

early warnings for potential catastrophic collapse of the sys- 333

tem. We have used a variety of examples from different fields 334

to demonstrate the workings and the anticipating power of 335

the digital twin, which include the Lorenz-96 climate network 336

of different sizes (in the main text), a driven chaotic CO2 337

laser system (SM 1), and an ecological system (SM 2). For 338

low-dimensional nonlinear dynamical systems, a single RC 339

network is sufficient for the digital twin. For high-dimensional 340

systems such as the climate network of a relatively large size, 341

parallel RC networks can be integrated to construct the digital 342

twin. At the level of the detailed state evolution, our recurrent 343

neural network based digital twin is essentially a dynamical 344

twin system that evolves in parallel to the real system, and 345

the evolution of the digital twin can be corrected from time to 346

time using sparse feedback of data from the target system (SM 347

3). In cases where direct measurements of the target system 348

are not feasible or are too costly, the digital twin provides a 349

way to assess the dynamical evolution of the target system. At 350

the qualitative level, the digital twin can faithfully reproduce 351

the attractors of the target system, e.g., chaotic, periodic, or 352

quasiperiodic, without the need of state updating. In addition, 353

we show that the digital twin is able to accurately predict a 354

critical bifurcation point and the average lifetime of transient 355

chaos that occurs after the bifurcation, even under a driving 356

signal that is different from that during the training (SM 6). 357

The issue of robustness against dynamical and observational 358

noises in the training data has also been treated (SM 7). 359

To summarize, our RC based digital twins are capable 360

of performing the following tasks: (1) extrapolating certain 361

dynamical evolution of the target system beyond the training 362

parameter regime, (2) making long-term continual forecasting 363

of nonlinear dynamical systems under nonstationary external 364

driving with sparse state updates, (3) inferring the existence 365

of hidden variables in the system and reproducing/predicting 366

their dynamical evolution, (4) adapting to external driving of 367

different waveform, and (5) extrapolating the global bifurcation 368

behaviors to systems of different sizes. 369

Our design of the digital twins for nonlinear dynamical 370

systems can be extended in a number of ways. 371

1. Online learning. Online or continual learning is a recent 372

trend in machine-learning research. Unlike the approach of 373
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batch learning, where one gathers all the training data in one374

place and does the training on the entire data set (the way375

by which training is conducted for our work), in an online376

learning environment, one evolves the machine learning model377

incrementally with the flow of data. For each training step,378

only the newest inputted training data is used to update the379

machine learning model. When a new data set is available, it380

is not necessary to train the model over again on the entire381

data set accumulated so far, but only on the new set. This can382

result in a significant reduction in the computational complex-383

ity. Previously, an online learning approach to RC known as384

the FORCE learning was developed (45). An attempt to deal385

with the key problem of online learning termed “catastrophic386

forgetting” was made in the context of RC (46). Further inves-387

tigation is required to see if these methods can be exploited388

for creating digital twins through online learning.389

2. Beyond reservoir computing. Second, the potential power390

of recurrent neural network based digital twin may be fur-391

ther enhanced by using more sophisticated recurrent neural392

network models depending on the target problem. We use393

the RC networks because they are relatively simple yet pow-394

erful enough for both low- and high-dimensional dynamical395

systems. Schemes such as knowledge-based hybrid RC (47) or396

ODE-nets (48) are worth investigating.397

3. Reinforcement learning. Is it possible to use digital twins398

to make reinforcement learning feasible in situations where399

the target system cannot be “disturbed”? Particularly, re-400

inforcement learning requires constant interaction with the401

target system during training so that the machine can learn402

from its mistakes and successes. However, for a real-world403

system, these interactions may be harmful, uncontrollable, and404

irreversible. As a result, reinforcement learning algorithms405

are rarely applied to safety-critical systems (49). In this case,406

digital twins can be beneficial. By building a digital twin,407

the reinforcement learning model does not need to interact408

with the real system, but with its simulated replica for effi-409

cient training. This area of research is called model-based410

reinforcement learning (50).411

4. Potential benefits of noise. A phenomenon uncovered in our412

study is the beneficial role of dynamical noise in the target413

system. As briefly discussed in Fig. 3, adding dynamic noise414

in the training dataset enhances the digital twin’s ability to415

extrapolate the dynamics of the target system with different416

waveform of driving. Intuitively, noise can facilitate the ex-417

ploration of the phase space of the target nonlinear system.418

A systematic study of the interplay between dynamical noise419

and the performance of the digital twin is worthy.420

5. Extrapolability. The demonstrated extrapolability of our421

digital twin, albeit limited, may open the door to forecasting422

the behavior of large systems using twins trained on small423

systems. Much research is needed to address this issue.424

6. Spatiotemporal dynamical systems with multistability. We have425

considered digital twins for a class of coupled dynamical sys-426

tems: the Lorenz-96 climate model. When developing digi-427

tal twins for spatiotemporal dynamical systems, two issues428

can arise. One is the computational complexity associated429

with such high-dimensional systems. We have demonstrated430

that parallel reservoir computing provides a viable solution.431

Another issue is multistability. Spatiotemporal dynamical432

systems in general exhibit extremely rich dynamical behaviors 433

such as chimera states (51–59). To develop digital twins of 434

spatiotemporal dynamical systems with multiple coexisting 435

states requires that the underlying recurrent neural networks 436

possess certain memory capabilities. To develop methods to 437

incorporate memories into digital twins is a problem of current 438

interest. 439

Materials and Methods 440

441

Methods. The basic construction of the digital twin of a nonlinear 442

dynamical system (61) is illustrated in Fig. 5. It is essentially 443

a recurrent RC neural network with a control mechanism, which 444

requires two types of input signals: the observational time series 445

for training and the control signal f(t) that remains in both the 446

training and self-evolving phase. The hidden layer hosts a random 447

or complex network of artificial neurons. During the training, the 448

hidden recurrent layer is driven by both the input signal u(t) and 449

the control signal f(t). The neurons in the hidden layer generate a 450

high-dimensional nonlinear response signal. Linearly combining all 451

the responses of these hidden neurons with a set of trainable and 452

optimizable parameters yields the output signal. Specifically, the 453

digital twin consists of four components: (i) an input subsystem 454

that maps the low-dimensional (Din) input signal into a (high) Dr- 455

dimensional signal through the weighted Dr ×Din matrix Win, (ii) 456

a reservoir network of N neurons characterized by Wr, a weighted 457

network matrix of dimension Dr ×Dr, where Dr � Din, (iii) an 458

readout subsystem that converts the Dr-dimensional signal from 459

the reservoir network into an Dout-dimensional signal through the 460

output weighted matrix Wout, and (iv) a controller with the matrix 461

Wc. The matrix Wr defines the structure of the reservoir neural 462

network in the hidden layer, where the dynamics of each node are 463

described by an internal state and a nonlinear hyperbolic tangent 464

activation function. 465

The matricesWin, Wc, andWr are generated randomly prior to
training, whereas all elements ofWout are to be determined through
training. Specifically, the state updating equations for the training
and self-evolving phases are, respectively,

r(t+∆t) = (1− α)r(t)
+ α tanh [Wrr(t) +Winu(t) +Wcf(t)], [2]

r(t+∆t) = (1− α)r(t)
+ α tanh [Wrr(t) +WinWoutr′(t) +Wcf(t)], [3]

where r(t) is the hidden state, u(t) is the vector of input training
data, ∆t is the time step, the vector tanh (p) is defined to be
[tanh (p1), tanh (p2), . . .]T for a vector p = [p1, p2, ...]T , and α is
the leakage factor. During the training, several trials of data are
typically used under different driving signals so that the digital
twin can “sense, learn, and mingle” the responses of the target
system to gain the ability to extrapolate a response to a new driving
signal that has never been encountered before. We input these trials
of training data, i.e., a few pairs of u(t) and the associated f(t),
through the matrices Win and Wc sequentially. Then we record the
state vector r(t) of the neural network during the entire training
phase as a matrix R. We also record all the desired output, which is
the one-step prediction result v(t) = u(t+ ∆t), as the matrix V. To
make the readout nonlinear and to avoid unnecessary symmetries
in the system (24, 62), we change the matrix R into R′ by squaring
the entries of even dimensions in the states of the hidden layer. [The
vector (r′(t) in Eq. Eq. (3) is defined in a similar way.] We carry
out a linear regression between V and R′, with a `-2 regularization
coefficient β, to determine the readout matrix:

Wout = V · R′T (R′ · R′T + βI)−1. [4]

To achieve acceptable learning performance, optimization of hyper- 466

parameters is necessary. The four widely used global optimization 467

methods are genetic algorithm (63–65), particle swarm optimiza- 468

tion (66, 67), Bayesian optimization (68, 69), and surrogate opti- 469

mization (70–72). We use the surrogate optimization (the algorithm 470
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v(t)

𝒲in
r(t) 𝒲out

Input layer

Hidden layer

Output layer
𝒲r

u(t)

Controller 𝑓(𝑡)

Closed loop operation: 

a self-evolving 

dynamical system 

during predicting

Open loop operation 

for training

Fig. 5. Basic structure of the digital twin of a chaotic system. It consists of three layers: the input layer, the hidden recurrent layer, an output layer, as well as a controller
component. The input matrixWin maps the Din-dimensional input chaotic data to a vector of much higher dimension Dr , where Dr � Din. The recurrent hidden layer is
characterized by the Dr ×Dr weighted matrixWr . The dynamical state of the ith neuron in the reservoir is ri, for i = 1, . . . , Dr . The hidden-layer state vector is r(t),
which is an embedding of the input (60). The output matrixWout readout the hidden state into the Dout-dimensional output vector. The controller provides an external driving
signal f(t) to the neural network. During training, the vector u(t) is the input data, and the blue arrow exists during the training phase only. In the predicting phase, the
output vector v(t) is directly fed back to the input layer, generating a closed-loop, self-evolving dynamical system, as indicated by the red arrow connecting v(t) to u(t). The
controller remains on in both the training and predicting phases.

surrogateopt in Matlab). The hyperparameters that are optimized471

include d - the average degree of the recurrent network in the hid-472

den layer, λ - the spectral radius of the recurrent network, kin -473

the scaling factor of Win, kc - the scaling of Wc, c0 - the bias in474

Eq. Eq. (2) and Eq. (3), α - the leakage factor, and β - the `-2475

regularization coefficient. The RC network is validated using the476

same driving f(t) as in the training phase, but driving signals with477

different amplitudes and frequencies are used in the testing phase.478

Prior to making predictions, the RC network is initialized using479

random short segments of the training data, so no data from the480

target system under the testing driving signals f(t) is required. To481

produce the bifurcation diagram, sufficiently long transients in the482

dynamical evolution of the RC network are disregarded.483
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1. A driven chaotic laser system12

We consider the single-mode, class B, driven chaotic CO2 laser system (1–4) described by
du

dt
= −u[f(t)− z], [1]

dz

dt
= ε1z − u− ε2zu+ 1, [2]

where the dynamical variables u and z are proportional to the normalized intensity and the population inversion, f(t) =13

A cos(Ωt+ φ) is the external sinusoidal driving signal of amplitude A and frequency Ω, ε1 and ε2 are two parameters. Chaos is14

common in this laser system (1, 2, 4). For example, for ε1 = 0.09, ε2 = 0.003, and A = 1.8, there is a chaotic attractor for15

Ω < Ωc ≈ 0.912, as shown by a sustained chaotic time series in Fig. S1(a1). The chaotic attractor is destroyed by a boundary16

crisis (5) at Ωc. For Ω > Ωc, there is transient chaos, after which the system settles into periodic oscillations, as exemplified in17

Fig. S1(a2). Suppose chaotic motion is desired. The crisis bifurcation at Ωc can then be regarded as a kind of system collapse.18

To build a digital twin for the chaotic laser system, we use the external driving signal as the natural control signal for the19

RC network. Different from the examples in the main text, here the driving frequency Ω, instead of the driving amplitude A,20

serves as the bifurcation parameter. Assuming observational data in the form of time series are available for several values of Ω21

in the regime of a chaotic attractor, we train the RC network using chaotic time series collected from four values of Ω < Ωc:22

Ω = 0.81, 0.84, 0.87, and 0.90. The training parameter setting is as follows. For each Ω value in the training set, the training23

and validation lengths are t = 2, 000 and t = 83, respectively, where the latter corresponds to approximately five Lyapunov24

times. The “warming up” length is t = 0.5. The time step of the reservoir system is ∆t = 0.05. The size of the random RC25

network is Dr = 800. The optimal hyperparameter values are determined to be d = 151, λ = 0.0276, kin = 1.18, kc = 0.113,26

α = 0.33, and β = 2× 10−4.27

Figures S1(A1) and S1(A2) show two representative time series from the laser model (the ground truth) for Ω = 0.905 < Ωc28

and Ω = 0.925 > Ωc, respectively. The one in panel (A1) is associated with sustained chaos (pre-critical) and the other in panel29

(A2) is characteristic of transient chaos with a final periodic attractor (post-critical). The corresponding time series generated30

by the digital twin are shown in Figs. S1(B1) and S1(B2), respectively. It can be seen that the training aided by the control31

signal enables the digital twin to correctly capture the dynamical climate of the target system, e.g., sustained or transient32

chaos. The true return maps in the pre-critical and post-critical regimes are shown in Figs. S1(C1) and S1(C2), respectively,33

and the corresponding maps generated by the digital twin are shown in Figs. S1(D1) and S1(D2). In the pre-critical regime, an34

invariant region (the green dashed square) exists on the return map in which the trajectories are confined, leading to sustained35

chaotic motion, as shown in Figs. S1(C1) and S1(D1). Within the invariant region in which the chaotic attractor lives, the36

digital twin captures the essential dynamical features of the attractor. Because the training data are from the chaotic attractor37

of the target system, the digital twin fails to generate the portion of the real return map that lies outside the invariant region,38

which is expected because the digital twin has never been exposed to the dynamical behaviors that are not on the chaotic39

attractor. In the post-critical regime, a “leaky” region emerges, as indicated by the red arrows in Figs. S1(C2) and S1(D2),40

which destroys the invariant region and leads to transient chaos. The remarkable feature is that the digital twin correctly41

assesses the existence of the leaky region, even when no such information is fed into the twin during training. From the point42

of view of predicting system collapse, the digital twin is able to anticipate the occurrence of the crisis and transient chaos. A43

quantitative result of these predictions are demonstrated in 6.44

As indicated by the predicted return maps in Figs. S1(D1) and S1(D2), the digital twin is unable to give the final state after45

the transient, because such state must necessarily lie outside the invariant region from which the training data are originated.46

In particular, the digital twin is trained with time series data from the chaotic attractors prior to the crisis. With respect to47

Figs. S1(D1) and S1(D2), the digital twin can learn the dynamics within the dash green box in the plotted return maps, but is48

unable to predict the dynamics outside the box, as it has never been exposed to these dynamics.49

A comparison of the real and predicted bifurcation diagram is demonstrated in Fig. S2. The strong resemblance between50

them indicate the power of the digital twin in extrapolating the correct global behavior of the target system. Moreover, this51

demonstrates that not only can this approach extrapolate with various driving amplitudes A (as demonstrated in the main52

text), but the approach can also work with varying driving frequencies Ω.53

2. A driven chaotic ecological system54

We study a chaotic driven ecological system that models the annual blooms of phytoplankton under seasonal driving (6).
Seasonality plays a crucial role in ecological systems and epidemic spreading of infectious diseases (7), which is usually modeled
as a simple periodic driving force on the system. The dynamical equations of this model in the dimensionless form are (6):

dN

dt
= I − f(t)NP − qN, [3]

dP

dt
= f(t)NP − P, [4]

where N represents the level of the nutrients, P is the biomass of the phytoplankton, the Lotka-Volterra term NP models55

the phytoplankton uptake of the nutrients, I represents a small and constant nutrient flow from external sources, q is the56
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sinking rate of the nutrients to the lower level of the water unavailable to the phytoplankton, and f(t) is the seasonality term:57

f(t) = A sin(ωecot). The parameter values are (6): I = 0.02, q = 0.0012, and ωeco = 0.19.58

Climate change can dramatically alter the dynamics of this ecosystem (8). We consider the task of forecasting how the59

system behaves if the climate change causes the seasonal fluctuation to be more extreme. In particular, suppose the training60

data are measured from the system when it behaves normally under a driving signal of relatively small amplitude, and we wish61

to predict the dynamical behaviors of the system in the future when the amplitude of the driving signal becomes larger (due to62

climate change). The training parameter setting is as follows. The size of the RC network is Dr = 600 with Din = Dout = 2.63

The time step of the evolution of the network dynamics is ∆t = 0.1. The training and validation lengths for each value of the64

driving amplitude A in the training are t = 1, 500 and t = 500, respectively. The optimized hyperparameters of the RC are65

d = 350, λ = 0.42, kin = 0.39, kc = 1.59, α = 0.131, and β = 1× 10−7.5.66

Figure S3 shows the results of our digital twin approach on this ecological model to learn from the dynamics under a few67

different values of the driving amplitude to generate the correct response of the system to a driving signal of larger amplitude.68

In particular, the training data are collected with the driving amplitude A = 0.35, 0.4, 0.45 and 0.5, all in the chaotic regions.69

Figures S3(A1) and S3(A2) show the true attractors of the system for A = 0.45 and 0.56, respectively, where the attractor70

is chaotic in the former case (within the training parameter regime) and periodic in the latter (outside the training regime).71

The corresponding attractors generated by the digital twin are shown in Figs. S3(B1) and S3(B2). The digital twin can not72

only replicate the chaotic behavior in the training data [Fig. S3(B1)] but also predict the transition to a periodic attractor73

under a driving signal with larger amplitudes (more extreme seasonality), as shown in Fig. S3(B2). In fact, the digital twin can74

faithfully produce the global dynamical behavior of the system, both inside and outside the training regime, as can be seen75

from the nice agreement between the ground-truth bifurcation diagram in Fig. S3(C) and the diagram generated by the digital76

twin in Fig. S3(D).77

3. Continual forecasting under non-stationary external driving with sparse real-time data78

The three examples (Lorenz-96 climate network in the main text, the driven CO2 laser and the ecological system) have79

demonstrated that our RC based digital twin is capable of extrapolating and generating the correct statistical features of the80

dynamical trajectories of the target system such as the attractor and bifurcation diagram. That is, the digital twin can be81

regarded as a “twin” of the target system only on a statistical sense. In particular, from random initial conditions the digital82

twin can generate an ensemble of trajectories, and the statistics calculated from the ensemble agree with those of the original83

system. At the level of individual trajectories, if a target system and its digital twin start from the same initial condition,84

the trajectory generated by the twin can stay close to the true trajectory only for a short period of time (due to chaos).85

However, with infrequent state updates, the trajectory generated by the twin can shadow the true trajectory (in principle) for86

an arbitrarily long period of time (9), realizing continual forecasting of the state evolution of the target system.87

In data assimilation for numerical weather forecasting, the state of the model system needs to be updated from time to88

time (10–12). This idea has recently been exploited to realize long-term prediction of the state evolution of chaotic systems89

using RC (9). Here we demonstrate that, even when the driving signal is non-stationary, the digital twin can still generate the90

correct state evolution of the target system. As a specific example, we use the chaotic ecosystem in Eqs. (3-4) with the same91

RC network trained in Sec. 2. Figure S4(A) shows the non-stationary external driving f(t) = A(t) sin(ωecot) whose amplitude92

A(t) increases linearly from A(t = 0) = 0.4 to A(t = 2500) = 0.6 in the time interval [0, 2500]. Figure S4(B) shows the true93

(blue) and digital-twin generated (red) time evolution of the nutrient abundance. Due to chaos, without state updates, the two94

trajectories diverge from each other after a few cycles of oscillation. However, even with rare state updates, the two trajectories95

can stay close to each other for any arbitrarily long time, as shown in Fig. S4(C). In particular, there are 800 time steps96

involved in the time interval [0, 2500] and the state of the digital twin is updated 20 times, i.e., 2.5% of the available time series97

data. We will discuss the results further discussion in the next section.98

4. Continual forecasting with hidden dynamical variables99

In real-world scenarios, usually not all the dynamical variables of a target system are accessible. It is often the case that only a100

subset of the dynamical variables can be measured and the remaining variables are inaccessible or hidden from the outside101

world. Can a digital twin still make continual forecasting in the presence of hidden variables based on the time series data from102

the accessible variables? Also, Can the digital twin do this without knowing that there exists some hidden variables before103

training? In general, when there are hidden variables, the reservoir network needs to sense their existence, encode them in104

the hidden state of the recurrent layer, and constantly update them. As such, the recurrent structure of reservoir computing105

is necessary, because there must be a place for the machine to store and restore the implicit information that it has learned106

from the data. Compared with the cases where complete information about the dynamical evolution of all the observable is107

available, when there are hidden variables, it is significantly more challenging to predict the evolution of a target system driven108

by an non-stationary external signal using sparse observations of the accessible variables.109

As an illustrative example, we again consider the ecosystem described by Eqs. (3) and (4). We assume that the dynamical110

variable N (the abundance of the nutrients) is hidden and P (t), the biomass of the phytoplankton, is externally accessible.111

Despite the accessibility to P (t), we assume that it can be measured only occasionally. That is, only sparsely updated data of112

the variable P (t) is available. It is necessary that the digital twin is able to learn some equivalent of N(t) as the time evolution113

of P (t) also depends on the value N(t), and to encode the equivalent in the reservoir network. In an actual application, when114

the digital twin is deployed, knowledge about the existence of such a hidden variable is not required.115
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Figure S5 presents a representative resulting trial, where Fig. S5(A) shows the non-stationary external driving signal f(t)116

(the same as the one in Fig. S4(A)). Figure S5(B) shows, when the observable P (t) is not updated with the real data, the117

predicted time series (red) P (t) diverges from the true time series (blue) after about a dozen oscillations. However, if P (t) is118

updated to the digital twin with the true values at the times indicated by the purple vertical lines in Fig. S5(C), the predicted119

time series P (t) matches the ground truth for a much longer time. The results suggest that the existence of the hidden variable120

does not significantly impede the performance of continual forecasting.121

The results in Fig. S5 motivate the following questions. First, has the reservoir network encoded information about the122

hidden variable? Second, suppose it is known that there is a hidden variable and the training dataset contains this variable,123

can its evolution be inferred with only rare updates of the observable during continual forecasting? Previous results (13–15)124

suggested that reservoir computing can be used to infer the hidden variables in a nonlinear dynamical system. Here we show125

that, with a segment of the time series of N(t) used only for training an additional readout layer, our digital twin can forecast126

N(t) with only occasional inputs of the observable time series P (t). In particular, the additional readout layer for N(t) is used127

only for extracting information about N(t) from the reservoir network and its output is never injected back to the reservoir.128

Consequently, whether this additional task of inferring N(t) is included or not, the trained output layer for P (t) and the129

forecasting results of P (t) are not altered.130

Figure S5(D) shows that, when the observable P (t) is not updated with the real data, the digital twin can to infer the131

hidden variable N(t) for several oscillations. If P (t) is updated with the true value at the times indicated by the purple vertical132

lines in Fig. S5(C), the dynamical evolution of the hidden variable N(t) can also be accurately predicted for a much longer133

period of time, as shown in Fig. S5(E). It is worth emphasizing that during the whole process of forecasting and monitoring, no134

information about the hidden variable N(t) is required - only sparse data points of the observable P (t) are used.135

The training and testing settings of the digital twin for the task involving a hidden variable are as follows. The input136

dimension of the reservoir is Din = 1 because there is a single observable log10 P (t). The output dimension is Dout = 2 with137

one dimension of the observable log10 P (t + ∆t) in addition to one dimension of the hidden variable N(t + ∆t). Because138

of the higher memory requirement in dealing with a hidden variable, a somewhat larger reservoir network is needed, so we139

use Dr = 1, 000. The times step of the dynamical evolution of the neural network is ∆t = 0.1. The training and validating140

lengths for each value of the driving amplitude in the training are t = 3, 500 and t = 350, respectively. Other optimized141

hyperparameters of the reservoir are d = 450, λ = 1.15, kin = 0.32, kc = 3.1, α = 0.077, β = 1× 10−8.3, and σnoise = 10−3.0.142

It is also worth noting that Figs. S4 and S5 have demonstrated the ability of the digital twin to extrapolate beyond the143

parameter regime of the target system from which the training data are obtained. In particular, the digital twin was trained144

only with time series under stationary external driving of the amplitude A = 0.35, 0.4, 0.45, and 0.5. During the testing phase145

associated with both Figs. S4 and S5, the external driving is non-stationary with its amplitude linearly increasing from A = 0.4146

to A = 0.6. The second half of the time series P (t) and N(t) in Figs. S4 and S5 are thus beyond the training parameter regime.147

The results in Figs. S4 and S5 help legitimize the terminology “digital twin,” as the reservoir computers subject to the148

external driving are dynamical twin systems that evolve “in parallel” to the corresponding real systems. Even when the149

target system is only partially observable, the digital twin contains both the observable and hidden variables whose dynamical150

evolution is encoded in the recurrent neural network in the hidden layer. The dynamical evolution of the output is constantly151

(albeit infrequently) corrected by sparse feedback from the real system, so the output trajectory of the digital twin shadows the152

true trajectory of the target system. Suppose one wishes to monitor a variable in the target system, it is only necessary to read153

it from the digital twin instead of making more (possibly costly) measurements on the real system.154

5. Digital twins under external driving with varied waveform155

In the main text, it is demonstrated that dynamical noise added to the driving signal during the training can be beneficial.156

Figure S6 presents a comparison between the noiseless training and the training with dynamical noise of a strength δDB = 3×10−3
157

(as in the main text). The ground-truth bifurcation diagram is shown in Fig. S6(A) and three examples with different reservoir158

neural networks for the noiseless (B1, B2, B3) and noisy (C1, C2, C3) training schemes are shown. All the settings other than159

the noise level are the same as that in Fig. 3 in the main text. Though there is still a fluctuation in predicted results, adding160

dynamical noise into the training data can produce bifurcation diagrams that are in general closer to the ground truth than161

without noise.162

To further demonstrate the beneficial role of noise, we test the additive training noise scheme using the ecological system.
The training process and hyperparameter values of the digital twin are identical to these in Ref. [2]. A dynamical noise of
amplitude δDB = 3× 10−4 is added to the driving signal f(t) during training in the same way as in Fig. 3 in the main text.
During testing, the driving signals is altered to

ftest(t) = Atest sin(ωecot) + Atest

2 sin(ωeco

2 t+ ∆φ) [5]

where ωeco = 0.19. Two sets of testing signals ftest(t) are used, with Atest = 0.3 and 0.4, respectively. Figure S7 show the true163

and predicted bifurcation diagrams of log10 Pmax versus ∆φ for Atest = 0.3 (left column) and Atest = 0.4 (right column). It can164

be seen that the bifurcation diagrams generated by the digital twin with the aid of training noise are remarkably accurate. We165

also find that, for this ecological system, the amplitude δDB of the dynamical noise during training does not have a significant166

effect on the predicted bifurcation diagram. A plausible reason is that the driving signal f(t) is a multiplicative term in the167

system equations.168
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6. Quantitative characterization of the performance of digital twins169

In the main text, a quantitative measure of the overlapping rate between the target and predicted spanning regions is introduced170

to measure the performance of the digital twins, where a spanning region is the smallest simply connected region that encloses171

the entire attractor. In a two-dimensional projection, we divide a large reference plane into pixels of size 0.05× 0.05. All the172

pixels through which the system trajectory crosses and those surrounded by the trajectory belong to the spanning region, and173

the regions covering the true attractor of the target system and predicted attractor can be compared. In particular, all the174

pixels that belong to one spanned region but not to the other are counted and the number is divided by the total number of175

pixels in the spanned region of the true attractor. This gives RESR, the relative error of the spanned regions, as described in176

the main text. While this measure is effective in most cases, near a bifurcation (e.g., near the boundary of a periodic window),177

large errors can arise because a small parameter mismatch can lead to a characteristically different attractor. To reduce the178

error, we test the attractors at three nearby parameter values, e.g., A and A±∆A with ∆A = 0.005, and choose the smallest179

RESR values among the three.180

A direct comparison between the predicted bifurcation diagram with the ground truth is difficult given the rich information181

a bifurcation diagram can provide. To better quantify the here we provide another measure to quantify the performance of182

digital twins, we employ another measure (besides RESR). In particular, for a bifurcation diagram, the parameter values at183

which the various bifurcations occur are of great interest, as they define the critical points at which characteristic changes184

in the system can occur. To be concrete, we focus on the crisis point at which sustained chaotic motion on an attractor is185

destroyed and replaced by transient chaos. To characterize the performance of the digital twins in extrapolating the dynamics186

of the target system, we examine the errors in the predicted critical bifurcation point and in the average lifetime of the chaotic187

transient after the bifurcation.188

As an illustrative example, we take the driven chaotic laser system in SM 1, where a crisis bifurcation occurs at the critical
driving frequency Ωc ≈ 0.912 at which the chaotic attractor of the system is destroyed and replaced by a non-attracting chaotic
invariant set leading to transient chaos. We test to determine if the digital twin can faithfully predict the crisis point based
only on training data from the parameter regime of a chaotic attractor. Let Ω̂c be the digital-twin predicted critical point.
Figure S8(A) shows the distribution of Ω̂c obtained from 200 random realizations of the reservoir neural network. Despite the
fluctuations in the predicted Ω̂c, their average value is 〈Ω̂c〉 = 0.914, which is close to the true value Ωc = 0.912. A relative
error εΩ of Ω̂c can be defined as

εΩ = |Ωc − Ω̂c|
D(Ωc, {Ωtrain})

, [6]

where D(Ωc, {Ωtrain}) denotes the minimal distance from Ωc to the set of training parameter points {Ωtrain}, i.e., the difference189

between Ωc and the closest training point. For the driven laser system, we have D(Ωc, {Ωtrain}) ≈ 10%.190

The second quantity is the lifetime τtransient of transient chaos after the crisis bifurcation (16, 17), as shown in Fig. S8(B).191

The average transient lifetime is the inverse of the slope of the linear regression of predicted data points in Fig. S8(B), which is192

〈τ〉 ≈ 0.8×103. Compared with the true value 〈τ〉 ≈ 1.2×103, we see that the digital twin is able to predict the average chaotic193

transient lifetime to within the same order of magnitude. Considering that key to the transient dynamics is the small escaping194

region in Fig. S1(D2), which is sensitive to the inevitable training errors, the performance can be deemed as satisfactory.195

7. Robustness of digital twin against combined dynamical/observational noises196

Can our RC based digital twins withstand the influences of different types of noises? To address this question, we introduce197

dynamical and observational noises in the training data, which are modeled as additive Gaussian noises. Take the six-198

dimensional Lorenz-96 system from the main text as an example. Figure S9(A) shows the true bifurcation diagram under199

different amplitudes of external driving, where the vertical dashed lines specify the training points. Figures S9(B1) and S9(B2)200

show two realizations of the bifurcation diagram generated by the digital twin under both dynamical and observational noises201

of amplitudes σdyn = 10−2 and σob = 10−2. Two bifurcation diagrams for noise amplitudes of an order of magnitude larger:202

σdyn = 10−1 and σob = 10−1, are shown in Figs. S9(C1) and S9(C2). It can be seen that the additional noises have little effect203

on the performance of the digital twin in generating the bifurcation diagram.204

8. Periodic windows of a high period: effect of long transients205

Figure 1 in the main text demonstrates that the digital twin is able to predict many details of a bifurcation diagram but it fails206

to generate a relatively large periodic window about A = 3.2. A closer examination of the dynamics of the target Lorenz-96207

system reveals that the periodic attractor in the window has the period 21 with a rather complicated structure, as shown in208

Fig. S10(A) in a two-dimensional projection. The digital twin predicts a chaotic attractor, as shown in Fig. S10(B). The reason209

that the digital twin fails to predict the periodic attractor lies in the long transient of the trajectory before it reaches the final210

attractor, as shown in Fig. S10(C). A comparison between Figs. S10(B) and S10(C) indicates that what the digital twin has211

predicted is in fact the transient behavior in the periodic window. The implication is that the digital twin has in fact faithfully212

captured the dynamical climate of the target system.213
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Fig. S1. Performance of digital twin of a driven CO2 laser system to extrapolate system dynamics under different driving frequencies. (A1, A2) True sustained and transient
chaotic time series of log10 u(t) of the target system, for driving frequencies Ω = 0.905 < Ωc and Ω = 0.925 > Ωc, respectively. The sinusoidal driving signal f(t) is
schematically illustrated. In (A1), the system exhibits sustained chaos. In (A2), the system settles into a periodic state after transient chaos. (B1, B2) The corresponding time
series generated by the digital twin. In both cases, the dynamical behaviors generated by the digital twin agree with the ground truth in (A1, A2): sustained chaos in (B1) and
transient chaos to a periodic attractor in (B2). (C1,C2) The return maps constructed from the local minima of u(t) from the true dynamics, where the green dashed square
defines an interval that contains the chaotic attractor in (C1) or a non-attracting chaotic set due to the escaping region (marked by the brown arrow) leading to transient chaos in
(C2). (D1,D2) The return maps generated by the digital twin for the same values of Ω as in (C1,C2), respectively, which agree with the ground truth. The escaping region is
successfully predicted in (D2).
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Fig. S2. Comparison of the real (A) and predicted (B) bifurcation diagrams of the driven laser system with varying driving frequencies Ω. The four vertical grey dashed lines
indicate the values of driving frequencies Ω used for training the RC neural network. The strong resemblance between the two bifurcation diagrams indicates the power of the
digital twin in extrapolating the correct global behavior of the target system, and demonstrates that not only can this approach extrapolate system dynamics to various driving
amplitudes A, but also to varying driving frequency Ω.
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Fig. S3. Performance of the digital twin of an ecological model about blooms of phytoplankton with seasonality. The effect of seasonality is modeled by a sinusoidal driving
signal f(t) = A sin(ωecot). (A1, A2) Chaotic and periodic attractors of this system in the (N, log10 P ) plane for A = 0.45 and A = 0.56, respectively. (B1, B2) The
corresponding attractors generated by the digital twin under the same driving signals f(t) as in (A1, A2). The digital twin has successfully extrapolated the periodical behavior
outside the chaotic training region. (C) The ground-truth bifurcation diagram of the target system. (D) The digital-twin generated bifurcation diagram. In (C) and (D), the four
vertical grey dashed lines indicate the values of driving amplitudes A used for training the RC network. The strong resemblance between the two bifurcation diagrams indicates
the power of the digital twin in extrapolating the correct global behavior of the target system.
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Fig. S4. Continual forecasting of the chaotic ecological system under non-stationary external driving f(t) and with sparse updates of the dynamical variables. (A) A
nonstationary sinusoidal driving signal f(t) whose amplitude increases with time. The task for the digital twin is to forecast the response of the chaotic target system under this
driving signal for a relatively long term. (B) The trajectory generated by the digital twin (red) in comparison with the true trajectory (blue). For t ∈ [0, 400], the two trajectories
match each other with small errors, but the digital-twin generated trajectory begins to deviate from the true trajectory at t ∼ 400 (due to chaos). (C) With only sparse updates
from real data at times indicated by the vertical lines (2.5% of the time steps in the given time interval), the digital twin can make relatively accurate predictions for a long term,
demonstrating the ability to perform continual forecasting.

Ling-Wei Kong, Yang Weng, Bryan Glaz, Mulugeta Haile and Ying-Cheng Lai 9 of 16



Isr
ae

l-U
S BIR

D Fou
ndati

on

Fig. S5. Continual forecasting and monitoring of a hidden dynamical variable in the chaotic ecological system under non-stationary external driving with sparse updates from
the observable. The system is described by Eqs. (3) and (4). The dynamical variable N(t) is hidden, and the other variable P (t) is externally accessible but only sparsely
sampled measurement of it can be performed. (A) The non-stationary sinusoidal driving signal f(t) with a time-varying amplitude. (B) Digital-twin generated time evolution of
the accessible variable P (t) (red) in comparison with the ground truth (blue) in the absence of any state update of P (t). The predicted time evolution quickly diverges from the
true behavior. (C) With sparse updates of P (t) at the times indicated by the purple vertical lines (10% of the times steps), the digital twin is able to make an accurate forecast
of P (t). (D) Digital-twin generated time evolution of the hidden variable N(t) (red) in comparison with the ground truth (blue) in the absence of any state update of P (t). (E)
Accurate forecasting of the hidden variable N(t) with sparse updates of P (t).
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Fig. S6. Comparisons of the prediction performance between the noiseless (left) and noisy (right) cases on the task of predicting under external driving with different waveform.
The target system is a six-dimensional Lorenz-96 system. Panel (A) shows the true bifurcation diagram. Panels (B1-B3) show the prediction results without any dynamical
noise in the training data with three realizations of the reservoir network. Panels (C1-C3) show the prediction results with dynamical noise of a strength δDB = 3× 10−3 in the
training data. The settings are the same as that in Fig. 3 in the main text.
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Fig. S7. Performance of the digital twin with the ecological model under driving signals with waveform different from the training set. The testing driving signals are described by
Eq. 5 while the training driving signals are sinusoidal waves with small dynamical noise. (A1) The real bifurcation diagram for Atest = 0.3. (A2, A3) Predicted bifurcation
diagrams for Atest = 0.3 with two random realizations of the reservoir networks. (B1-B3) Same as (A1-A3) but with Atest = 0.4.
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Fig. S8. Quantitative performance of the digital twin for a chaotic driven laser system. (A) Distribution of the predicted values of the crisis bifurcation point Ω̂c, at which a
chaotic attractor is destroyed and replaced by a non-attracting chaotic invariant set leading to transient chaos. The blue and red vertical dashed lines denote the true value
Ωc ≈ 0.912 and the average predicted value 〈Ω̂c〉, respectively, where 200 random realizations of the reservoir neural network are used to generate this distribution. Despite
the fluctuations in the predicted crisis point, the ensemble average value of the prediction is quite close to the ground truth. (B) Exponential distribution of the lifetime of transient
chaos slightly beyond the crisis point: true (blue) and predicted (red) behaviors. The predicted distribution is generated using 100 random reservoir realizations, each with 200
random initial ‘warming up” data.
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Fig. S9. Robustness of digital twin against combined dynamical and observational noises. The setting is the same as that in Fig. 1 in the main text, except with additional noises
in the training data. (A) A true bifurcation diagram of the six-dimensional Lorenz-96 system. (B1, B2) Two examples of the bifurcation diagram predicted by the digital twin
with training data under dynamical noise of amplitude σdyn = 10−2 and observational noise of amplitude σob = 10−2. (C1, C2) Two examples of the predicted bifurcation
diagrams under the two kinds of noise with σdyn = 10−1 and σob = 10−1. Both the dynamical and observational noises are additive Gaussian processes. It can be seen that
though larger additional noises make the predicted details less accurate, the general shapes of the predicted results are not harmed significantly. The settings of the training
data and reservoir neural networks are the same as those in Fig. 2 in the main text. The dynamical noises are added to the dynamical equations of the state variables. There is
no noise in the sinusoidal external driving.
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Fig. S10. Origin of the failure of the digital twin in predicting the periodic window in Fig. 1(C) in the main text. (A) A two-dimensional portrait of the periodic attractor of period-21
in the Lorenz-96 system for A = 3.2. (B) The digital-twin predicted chaotic attractor. (C) The transient behavior of the target Lorenz-96 system for A = 3.2. The remarkable
resemblance between (B) and (C) suggests that the trained digital twin has faithfully captured the dynamical climate of the target system.
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